Computing the Shapley Value in Allocation Problems: Approximations and Bounds, with an Application to the Italian VQR Research Assessment Program

نویسندگان

  • Francesco Lupia
  • Angelo Mendicelli
  • Andrea Ribichini
  • Francesco Scarcello
  • Marco Schaerf
چکیده

In allocation problems, a given set of goods are assigned to agents in such a way that the social welfare is maximised, that is, the largest possible global worth is achieved. When goods are indivisible, it is possible to use money compensation to perform a fair allocation taking into account the actual contribution of all agents to the social welfare. Coalitional games provide a formal mathematical framework to model such problems, in particular the Shapley value is a solution concept widely used for assigning worths to agents in a fair way. Unfortunately, computing this value is a #P-hard problem, so that applying this good theoretical notion is often quite difficult in real-world problems. We describe useful properties that allow us to greatly simplify the instances of allocation problems, without affecting the Shapley value of any player. Moreover, we propose algorithms for computing lower bounds and upper bounds of the Shapley value, which in some cases provide the exact result and that can be combined with approximation algorithms. The proposed techniques have been implemented and tested on a real-world application of allocation problems, namely, the Italian research assessment program, known as VQR. For the large university considered in the experiments, the problem involves thousands of agents and goods (here, researchers and their research products). The algorithms described in the paper are able to compute the Shapley value for most of those agents, and to get a good approximation of the Shapley value for all of them.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Obtaining a possible allocation in the bankruptcy model using the Shapley value

Data envelopment analysis (DEA) is an effective tool for supporting decision-makers to assess bankruptcy, uncertainty concepts including intervals, and game theory. The bankruptcy problem with the qualitative parameters is an economic problem under uncertainty. Accordingly, we combine the concepts of the DEA game theory and uncertain models as interval linear programming (ILP), which can be app...

متن کامل

Bounds on the outer-independent double Italian domination number

An outer-independent double Italian dominating function (OIDIDF)on a graph $G$ with vertex set $V(G)$ is a function$f:V(G)longrightarrow {0,1,2,3}$ such that if $f(v)in{0,1}$ for a vertex $vin V(G)$ then $sum_{uin N[v]}f(u)geq3$,and the set $ {uin V(G)|f(u)=0}$ is independent. The weight ofan OIDIDF $f$ is the value $w(f)=sum_{vin V(G)}f(v)$. Theminimum weight of an OIDIDF on a graph $G$ is cal...

متن کامل

Fair division rules for funds distribution: The case of the Italian Research Assessment Program (VQR 2004-2010)

In a great number of applications, it is necessary to distribute resources or tasks to agents collaborating with each other in order to maximize the social welfare of the structure they belong to. The question in these cases is how to divide in a fair way the outcome that the structure eventually earns, say money, to the participating agents. The paper faces this issue by focusing on a real-wor...

متن کامل

Soft Computing-based New Interval-valued Pythagorean Triangular Fuzzy Multi-criteria Group Assessment Method without Aggregation: Application to a Transport Projects Appraisal

In this paper, an interval-valued Pythagorean triangular fuzzy number (IVPTFN) as a useful tool to handle decision-making problems with vague quantities is defined. Then, their operational laws are developed. By introducing a novel method of making a decision on the concept of possibility theory, a multi-attribute group decision-making (MAGDM) problem is considered, in which the attribute value...

متن کامل

SHAPLEY FUNCTION BASED INTERVAL-VALUED INTUITIONISTIC FUZZY VIKOR TECHNIQUE FOR CORRELATIVE MULTI-CRITERIA DECISION MAKING PROBLEMS

Interval-valued intuitionistic fuzzy set (IVIFS) has developed to cope with the uncertainty of imprecise human thinking. In the present communication, new entropy and similarity measures for IVIFSs based on exponential function are presented and compared with the existing measures. Numerical results reveal that the proposed information measures attain the higher association with the existing me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016